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FFAG Longitudinal Equations of
Motion

● Time of flight is approximately a parabolic function of energy

dτ

ds
= ∆T

(

2E − Ei − Ef

∆E

)2
− T0,

● Energy gain from RF

dE

ds
= V cos(ωτ),
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Time-of-Flight vs. Energy
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Normalized Variables

● Change of variables

x = ωτ p =
E − Ei

∆E
u =

s

ω∆T

◆ Accelerate from p = 0 to p = 1

● New equations of motion

dx

du
= (2p − 1)2 − b

dp

du
= a cos x a =

V

ω∆T∆E
b =

T0
∆T

● Hamiltonian
1
6
(2p − 1)3 −

b

2
(2p − 1) − a sin x
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Parameter Regimes

● To pass particles through from p = 0 to p = 1, require a > b3/2/3

● For central particle to cross p = 0 and p = 1, require
a > |1/6 − b/2|

● Small a, smaller phase space region for bunch

● Requirements together lead to minimum a of 1/24

◆ Smaller a gives more emittance growth

● Based on design requirements (emittance, allowed emittance
growth, etc.), determine a and b

5



Particles Passing Through
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Particles Barely Pass
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Particles Can’t Pass
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Central Particle Doesn’t Make It
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Central Particle Just Makes It
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Lower a
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Allowed Region of Parameter Space
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Symplectic Maps

● A general symplectic map can be described by a “Dragt-Finn
Factorization”:

e−:g1: · · · e:f4:e:f3:e:f2:e:f1:

◆ I won’t go into what precisely this means. . .

● fn is a nth-order homogeneous polynomial in the phase space
variables

● f1 describes the final reference point, g1 the initial reference point

● f2 is the linear part of the map

● The rest are nonlinear
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One-Dimensional Example

● Write fn as

fn =
n

∑

k=0
fnkx

n−kpk

● Calculate the emittance using the second-order covariance matrix
√

det{〈zz
T 〉 − 〈z〉〈z〉T}

● To lowest order, the emittance growth is (f2 = 0)

3
4
〈J2〉(9f2

30 − 6f30f32 + 5f2
32 + 9f2

33 − 6f33f31 + 5f2
31)

−
1
2
〈J〉2[(3f30 + f32)

2 + (3f33 + f31)
2]

◆ 〈J〉 = ǫ is the emittance; 〈J2〉 > 〈J〉2

◆ This can be negative if 〈J2〉 < (4/3)〈J〉2 (equality for uniform)!
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Computing Emittance Growth

● For given a and b, compute f3

● Transform f3 with a linear transform corresponding to the
orientation of the incoming ellipse
◆ Minimize emittance growth over that transform (two free

parameters)

● Minimize the result with respect to b

● Have emittance growth as a function of a
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Emittance Growth Analysis

● For small a, ∆ǫ/(ǫ2) ∝ (a − 1/24)−2

● Emittance growth is smaller for smaller 〈J2〉/ǫ2

● To use:
◆ Compute emittance in normalized coordinates
◆ Choose acceptable emittance growth
◆ Find a which gives that emittance growth

● Optimal b is independent of 〈J2〉/ǫ2

● For small a, optimal b is the minimum b

◆ Can be negative!

● Optimal ellipse orientation is tilted, even though initial phase
space trajectories are flat
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Emittance Growth vs. a
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Optimal b
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Allowed Region of Parameter Space
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Time-of-Flight vs. Energy
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Emittance Growth vs. b
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Optimal Orientation
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After FFAG
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Central Particle Just Makes It
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Emittance Reduction Example

● Before, found that for some cases to lowest order, emittance went
down!

● What does this mean?

● Properly choose f3 to get “emittance reduction”

● Nearly uniform distribution, but weighted slightly to the outside.
0.6% emittance reduction

● Distribution more heavily weighted to the outside: 6.3% emittance
reduction

● Difficult to get reductions significantly larger than this: would need
higher amplitude distributions, and higher order terms start to
dominate
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Nearly Uniform: Before
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Nearly Uniform: After
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Ring Distribution
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Analysis

● Phase space area occupied and local density stay the same! No
violation of phase space area conservation

● Distribution is getting nonlinearly shifted toward the left center.
◆ Particles are getting concentrated near that point, reducing

computed emittance
◆ With a more uniform distribution, particles are also pushed away

from that point
◆ Ring-like distribution has fewer particles being pushed away
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Individual Particles
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Conclusions

● Have a way of computing longitudinal emittance growth from
FFAG parameters
◆ Good quantity for collider
◆ Still working on computing other quantities that are better for

neutrino factory: ellipse distortion

● Can use this to choose design parameters for an FFAG

● For some distributions, nonlinearities alone can lead to reduction
of emittance as computed using second order covariant
matrix

● This is not a real increase in phase space density: Liouville still
holds!
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